Injectable Hydrogels: A Review of Injectability Mechanisms and Biomedical Applications

Authors

Abstract:

Hydrogels have been used for biomedical applications in recent decades. They are a perfect candidate for regenerative medicine as they resemble the extracellular matrix of native tissues. In addition, their highly hydrated structure makes them a suitable choice for drug and other therapeutics delivery. Injectable hydrogels have increasingly gained attention due to their capability for homogeneous mixing with cells and therapeutic agents, minimally invasive administration, and perfect defect filling. In this review, we discuss various mechanisms which facilitate injectability of hydrogels, including in situ gelling liquids, injectable gels, and injectable particles. Then, we explore the biomedical applications of injectable hydrogels, including tissue engineering, therapeutic agent delivery, and medical devices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Physicochemical Characteristics and Biomedical Applications of Hydrogels: A Review

Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...

full text

physicochemical characteristics and biomedical applications of hydrogels: a review

hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. these interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...

full text

Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications

Injectable hydrogels are gaining popularity as tissue engineering constructs because of their ease of handling and minimal invasive delivery. Making hydrogels from natural polymers helps to overcome biocompatibility issues. Here, we have developed an Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. Rheological studies, such as viscoelastic behavior (elastic modul...

full text

Fluidic Oscillators’ Applications, Structures and Mechanisms – A Review

Enhancement of heat and mass transfer and decrease of energy dissipation are great necessities of the evolution of fluid flow devices. Utilizing oscillatory or pulsatile fluid flow for periodic disturbing of velocity and thermal boundary layers is one of the methods with exciting results. Passive methods of generating oscillatory flow are preferred to active methods because of simplicity, no ne...

full text

Injectable, Biodegradable Hydrogels for Tissue Engineering Applications

Hydrogels have many different applications in the field of regenerative medicine. Biodegradable, injectable hydrogels could be utilized as delivery systems, cell carriers, and scaffolds for tissue engineering. Injectable hydrogels are an appealing scaffold because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, ...

full text

Nanocomposite hydrogels for biomedical applications.

Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydro...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  1- 19

publication date 2018-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023